Multi-resolution Graph Neural Networks for PDE Approximation

نویسندگان

چکیده

Deep Learning algorithms have recently received a growing interest to learn from examples of existing solutions and some accurate approximations the solution complex physical problems, in particular relying on Graph Neural Networks applied mesh domain at hand. On other hand, state-of-the-art deep approaches image processing use different resolutions better handle scales images, thanks pooling up-scaling operations. But no such operators can be easily defined for Convolutional (GCNN). This paper defines based meshes granularities. Multi-resolution GCNNs then defined. We propose MGMI approach, as well an architecture famed U-Net. These are experimentally validated diffusion problem, compared with projected CNN approach experiments witness their efficiency, generalization capabilities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

Multi-temporal Resolution Convolutional Neural Networks for Acoustic Scene Classification

In this paper we present a Deep Neural Network architecture for the task of acoustic scene classification which harnesses information from increasing temporal resolutions of Mel-Spectrogram segments. This architecture is composed of separated parallel Convolutional Neural Networks which learn spectral and temporal representations for each input resolution. The resolutions are chosen to cover fi...

متن کامل

Neural Networks for Localized Approximation

We prove that feedforward artificial neural networks with a single hidden layer and an ideal sigmoidal response function cannot provide localized approximation in a Euclidean space of dimension higher than one. We also show that networks with two hidden layers can be designed to provide localized approximation. Since wavelet bases are most effective for local approximation, we give a discussion...

متن کامل

Multi-resolution Surface Approximation for Animation

This paper considers the problem of approximating a digitized surface in R3 with a hierarchical bicubic B-spline to produce a manipulatable surface for further modelling or animation. The 3D data's original mapping from R2 (multiple rows of cylindrical scans) is mapped into the parametric domain of the B-spline (also in R2) using a modified chord-length parameterization. This mapping is used to...

متن کامل

A Multi Objective Graph Based Model for Analyzing Survivability of Vulnerable Networks

In the various fields of disaster management, choosing the best location for the Emergency Support & Supply Service Centers (ESSSCs) and the survivability of the network that provides the links between ESSSCs and their environment has a great role to be paid enough attention. This paper introduces a graph based model to measure the survivability of the linking's network. By values computed for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-86365-4_13